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Magnetic cumulation generators are powerful pulsed electrical-energy sources [1-3]. They substantially
exceed capacitors as regards the stored energy density, and therefore capacitor banks are used in conjunction
with magnetic cumulation generators (MCG)as asourceof the initial energy. However, capacitors of higher
energy capacity are now known. Pulse high-voltage capacitors with liquid insulators can store up to about 0,2
J/em® [4], and molecular capacitors give even higher figures [5]. On the other hand, the high energy density
in the MCG is observed only in the final volume, which is a small part of the whole generator. The design den-
sity of an MCG (ratio of the output energy to volume of the whole device) is about 10-50 J/cm?®, With this ratio
of the energy densities, the advantage of an MCG is not so striking, which makes it desirable to include capaci-
tors in the load circuit of the MCG, which opens up a new way of solving physics problems. For example, it
has been suggested [6] that an MCG should be used as the charging device for fast capacitor accumulators in
order to generate short pulses to supply linear induction electron accelerators, and shunting with a load capac-
itance is also used [7], this being fed from an inductive accumulator, which can also be employed when an MCG
is used, etc. All of this makes it important to consider the operation of an MCG into a capacitative load, which
has not previously been considered in the literature.

Here we consider very simple MCG schemes with capacitors: an MCG with a series RLC circuit and a
transformer MCG with a capacitor in the secondary circuit with certain particular cases of the inductance-
variation law. We assume that at the start a current I; flows in the MCG (subscript 0 denotes the initial value
of the corresponding quantity), while the potential difference across the capacitor is U; = 0. The process is
considered only during the operation of the MCG, since known relationships apply in the passive decay of the
currents,

1. The decreasing inductance substantially alters the relationships in the series RLC circuit, because
energy is generated in the circuit itself. An oscillatory state is also possible here, and the amplitude of the
oscillations will increase if the resistance R is small. The case of very large R is not so interesting, because
there is little effect on the variable circuit inductance L, Figure 1 shows the equivalent circuit of an MCG in
a series tuned circnit. Here L = Lg + Lj, where Lg is the variable inductance of the MCG, Ly is the load in-
ductance, and R is the circuit resistance, which formally includes all the magnetic~flux losses, while C is the
load capacitance. The circuit current is described by

LI+ @L+RI+(L+R+10)1=0, a.1)
where a dot denotes differentiation with respect to time, and the voltage on the capacitor is
LU 4 (L +~ R)U + UIC = 0. 1.2)

The L(t) and R(t) relationships are determined by the design of the MCG. We consider the solution to
(1.1) and (1.2) for the case R = 0, L(f) = Ljexp ¢ at), where a is a positive constant with the dimensions sec™!,

This L(t) is close to the law followed by the inductance in an MCG with a spiral of variable pitch. Then (1.1) is
written as

i —2al + a3(1 - 8%at)] = 0,
where 6 = 1/(aVL,C), and the solution to the equation is
I = [CJ4{x) 5 CoNo(x)] exp (at),
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where J,x), Ny) are Bessel functions of the first and second kinds, respectively, of zero order, whose argu-
ment is x = 20 exp (at /2); we have x, = 26 for t = 0, and subsequently x increases, where x/xq = VA, with A =

L,/ L.
When we have determined the constants of integration C, and C, from the initial conditions we get
i = [ Ny(zo)o(2) + Jo(z0) No(z) Iz 22, 1.3)
where i = 1/1; from this we can get i(t) because t = 2a~'In (x/xy), and similarly we have

u = [—N{z)J1(z) — Jo{zo)Ny(z) Inz/2, (1.4)
where u = U/(I;VL,/C).

The functions J,(xg), Ni(xq) define the initial phase of the process; we denote the zeros of Iy and Ny,
respectively, by gmn and %mn, where m is the order of the function and n is the order of the zero. For x < 7y
the function Nyx) is monotonic, and therefore i(x) is aperiodic, whereas it is oscillatory when x becomes
greater than pg,. The corresponding criteria for u(x) are ny; and u;. The character of the process at the
start of MCG operation is determined by x,. If the operating time T of the MCG is sufficiently large, the ini-
tial aperiodic process is replaced by an oscillatory one with an exponential law for the inductance.

If x is small, one can restrict oneself to the first terms in the series expansion of the Bessel functions.
The error is less than 1% for x < 0.1, while it is a few percent for x < 0.3. For small x,

2

izx[fo<x>+i‘§°—fvo<z)], WVX[A(xHiZg—Nl(x)].

If xf also remains small (subscript f denotes the value of the corresponding quantity at the finish of operation
of the MCG), then

I~ DJL, i ~ exp (at) = A, u = (b — 1)/2.
In that case the magnetic flux in the circuit persists and the current is independent of the capacitance.

For the oscillatory state we can obtain an approximate solution that is the more accurate the larger x:

i &~ VA —Ny(z) cos (z — a/4) + Jy(x) sin (& — n/4)],
u ~ [—Ny(z,) sin (z — n/4) — Jy(z,) cos (z — n/4)].

If the value of x, is also large, theni = 2/ 4008 (x — x¢), u ¥ AV4sin & — x¢), l.e., there will be current and
voltage oscillations increasing in amplitude and frequency. The final values ig and uf will be dependent on the
phase of the oscillation at t = T,

Figure 2 shows i(x) and u(x) calculated from (1.3) and (1.4) for xy = 0.1, xf = 10; at the start the process
is aperiodic but it then becomes oscillatory. We also show ¢&), the coefficient for magnetic-flux retention
@ =1/A. We have ¢ ~ 1 in the aperiodic state, while ¢ = A=1/4 cos x — x4} in the oscillatory one, i.e., the flux
oscillates in phase with the current with an amplitude decreasing in proportion to AV4, Therefore, on working
into a capacitance the magnetic flux in the generator may not be preserved even in the absence of a resistance.

We denote by W, the energy in the capacitor and by Wy, the energy in the inductance, and we have w¢ =
W, wpy = i%/A, W = wg + Wy, where we = We/ W Wy = Wiy /W3 w = (Wg + Win) / Wy the wo &), win &), wk)
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relationships have been calculated for the case x; = 0.1, x¢ = 10 (Fig. 3). In the aperiodic state, with small x¢,
the energy is storedinthe maininthe inductance, wyy > wqo. After the end of MCG operation, it is subsequently
localized in the capacitance, but in that case the period 27V L¢C » T, while if we take a value approximately
equal to T there is appreciable magnetic flux nonconservation.

2. Now let R = 0, L = Ly(1 — at); this law for inductance is characteristic for example of coaxial MCG,
MCG with a spiral of constant pitch, ete.  Then (1.1) will have the form

@ — at)f — 2al + a2 =0,
and the solution is ,
I = [CJy(y) + CoNA) 1L — at)=/3,

where the argument of the Bessel functions is y = 26(1 — at) 1/2 and differs from x in decreasing with the pas-
sage of time, The I(y) dependence is inversely proportional to time, since t = [1 — (y/yo)z] /a, but it is directly
proportional to L, On determining C; and Cy we get

L= [No (o) J1 () — Jo (00) N1 ()] 7155/ 2.
Similarly we can get
u = [Ny(yo)Jo(y) — Jo{yo)No(y)]ﬂyo/g-
When y £0.3,
i = [(yo/2)2N(yo) + AJo(yo) 1
u & [wo/2)Ny(yo) — ¥o(0-577 -+ In (y/2))74(yo) 1.

In that case if and uf are dependent on the initial phases of Ny({y() and J,({y); if Jy(7y) = 0, then i — for y —0.
If on the other hand y, = p¢n, the current is finite even for yy = 0:

iy = [Nyfttgn) Meupton/ 2.
If y, is also small, then
v I~ QJL, i = i, u= Yy, ln (y/y).
In the oscillatory state for large y¢
| i A/t cos (g — 1), U =~ Mtsin (y, — Y.

Figure 4 shows u(y) for yf = 0.1, y, = N, and yo = p¢3; in the second case there is no increase in u for y —0.

For small y , |
o & [(ay/2)?No(yo) + Jolyo) |
A1?o4, @ increases with y, and ¢ —~ Jy(y,) for y — 0. If y, is small, then ¢ = 1, and in the oscillatory state ¢ =
AV %cos Vo~ ¥).

Therefore, a uniform law for the inductance differs from the exponential case in that aninitially aperiodic
process at the start of MCG operation cannot be replaced by an oscillatory one, while the process oscillatory
for a sufficiently large T is replaced by an aperiodic one at the end of MCG operation.

3. IfR =0 (1.1), (1.2) can be solved for a series of particular cases.
Let R be constant at L, = Ly(1 — at); then (1.1) is written as
A — at)f + afv — 2)I + a202f =0,
where v = R/aL,; incorporating the initial conditions we get
§ = LNy B) — T (Y0 Ny () Loty 2y lyo) =2

The index of the Bessel function is here dependent on R, and therefore it is necessary to use the v and y de-
pendences of J, and N, [8]. Similarly,

U = [Ny v(y) — Jo(¥o)Vo(y) Wstyo/2) (y/yo)"-

Then v =0 for R=0and v =1 for R = —.L, and in this range the transition to the aperiodic state as a
function of v will lie at a point between 1y, and py;. For v > 1 there is no increase in the current amplitude,
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and the position to the aperiodic state as v increases shifts to larger y. For the oscillatory state (y > 1, y » v)
P G-/ cos (g, — u), u A/ sin (y, — y).
Clearly, the amplitude of I increases if v < 3/2 and the amplitude of U for v < 1/2.
We now assume that L = Ljexp at) with constant R/L. Then from (1.1) we have
I+ av — 2T + (a%0%st —v + 1 =0,
and the solution is
I = [CJy(z) + ColNy(x)l2z—v/2,
where v = R/al. With the given initial conditions
Cy = LIAN(z) — BNyyy(zg) ), Co = I AT (o) — B, yy(z) ],
where A and B are constants expressed as fairly cumbersome polynomials dependent on v and x,. For large x,
ia [A4cos (z — ) + Bsin (z — zo) }(2/m)1/ 2z 3-v)/2,
This relationship is somewhat simpler for other initial conditions.

In numerical solution of (1.1) and (1.2), the value of I, should be taken as the maximum possible for a
given generator in order to make the fullest use of the performance of the MCG, no matter what the mode of
creation in the circuit. If we reduce C at constant I, there is an increase in the amplitude of the first wave in
U, while the subsequent rise in the amplitude of U during the MCG operation may be less important, and this
state in fact represents a discontinuity in the initial current.

The frequency (LC)'1/2 of the oscillations in the tuned circuit may exceed the equivalent frequency char-
acteristic of the MCG, which is determined in the main by the properties of the generator on operation into
inductive and resistive loads. This increases thé géiiérator resistance and causes additional energy losses.

It would seem that special MCG designs are required to work with capacitative loads.

4. Figure 5 shows the equivalent circuit of an MCG with a capacitor in the secondary circuit of the trans-
former, where L;, Ly, Ry, and Ry are, respectively, the inductances and resistances of the primary and
secondary circuits, with L, = Lg + Lyt, where Lg is the working inductance of the MCG, Lt is the inductance
of the primary winding, Ly = Ly + Ly, Lyt is the inductance of the secondary winding, Ly, is the mutual induc-
tance, and I; and I, are, respectively, the currents in the primary and secondary windings, which are defined

1

oy

Ly -+ (Ly + BRI+ Ly, == 0, 4.1)
Lol 4 R,J, - LI, + I,/C = 0.

With Ry, Ry =0, Uy=0, I, =0 we have I, = ¢,/ L, — L3I, / L;; the second term hecomes comparable in mag-
nitude with the first only at the end of MCG operation, so I; has little effect on the MCG operation even when
there are high-frequency oscillations in the secondary circuit; I, is the sum of the MCG current from the in-
ductance I, in the secondary circuit in the absence of the capacitance and of the current oscillating at the start
of operation with frequency ~(LZC)'I/2, which then falls. For T « (LeC)I/z, where Le = (L, — L2, /L, L /15,
there are no oscillations in the secondary circuit.

If Ly =L,/ + at) (this is not so characteristic of an MCG but fits fairly closely to the inductance law
for a sectioned spiral), then (4.1) can be solved analytically with the above assumptions:
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Iy = [Ny(zg)J (2} — J1(z}N,(2) Iz, l(1 + )/ (A%z),

where iy ==T,Ly /Ly, I = Lg/Lyg, @ = Ly/Iyt, kis the transformer coupling coefficient, Iy, Ly, L, are the
initial values of I, L, L, 0 = 1/aV1,C, and

2 = [200F)) — )21 = o — B -+ at)/I 12,

As the MCG operates, z decreases from zy = 21/0K)V[{1 + a)(1 + a = K/D] to z¢ = [21/ (6O + o)A + & —
kz)]1/2; if z¢ > pyy, then i; has an oscillatory component for large zg:

iy & [20 (1 + &) 25/ (k225)] sin (z, — 2).

For z, < n;; we have iy ¥ (1 — 2z} /2511 + @) /K, i.e., the current is as in the case of the MCG working in the
absence of a capacitor in the secondary circuit.

We integrate the expression for i, to get u = F /6, where u = -—U(LZC)1/2/(IIOL2); F = [N{(zgdyz) ~ Jy(z) x
No(@)1(nzy/2) + 1; for large zg we have u = [(z(,/z)1/2 cos (zy— z) — 1]/0, while for small zZ,we have u ¥ (z,—
z)2/26z.

Then w, = U’k?/[I(1 + a)], Wy, = Bak?/[IQ + @)?].

Figure 6 shows I (t) and U(t) as calculated for the K~-160 transformer generator [9] loaded with various
capacitors, The secondary circuit of the generator is closed 80 usec before the end of operation, and in this
section Ly(t) ~91:107%~ 10.6-10% — 1.95t* + 6.2 - 10>, R,(t) ~ 8.8+1075 — 0.83t. The secondary winding has
16 turns, Lyt =26 nH, Lyt = 6.8 uH, Ly, = 0.4 pH, k=0.96, @ = 0.44, Ry =2-107% &, L, = 5.4 MA.

These examples show that an MCG can work efficiently into a capacitative load under certain conditions,
The character of the MCG operation then differs substantially from that with inductive or resistive loads. The
main difference is due to the possibility of an oscillatory component in the current. Even in the absence of
resistances, the magnetic flux in the MCG circuit may not be retained.

The output energy of the MCG increases less rapidly in the oscillatory state, but in the aperiodic one
it is localized in the main only in the inductance. The capacitance can also be connected in other ways, e.g.:
a capacitor in parallel with an inductive or resistive load, with current-switching components in the circuit,

efc.

Specially designed MCG are best for use with capacitative loads. The use of such an MCG would enable
one, for example, to obtain several equal current half-waves from a capacitor battery. The design of an open
tuned circuit supplied from an MCG allows one to transform the MCG energy into radio waves. Considerable
interest also attaches to operation of an MCG into a line with distributed parameters.
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